The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories
نویسندگان
چکیده
A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700–1000 yr. Numerical models suggest ages twice as old. Here, the authors present an inverse framework to determine the mean age and its upper and lower bounds given Global Ocean Data Analysis Project (GLODAP) radiocarbon observations, and they show that the potential range of ages increases with the number of constituents or sources that are included in the analysis. The inversion requires decomposing the World Ocean into source waters, which is obtained here using the total matrix intercomparison (TMI) method at up to 28 3 28 horizontal resolution with 11 113 surface sources. The authors find that the North Pacific at 2500-m depth can be no younger than 1100 yr old, which is older than some previous observational estimates. Accounting for the broadness of surface regions where waters originate leads to a reservoir-age correction of almost 100 yr smaller than would be estimated with a two or three water-mass decomposition and explains some of the discrepancy with previous observational studies. A best estimate of mean age is also presented using the mixing history along circulation pathways. Subject to the caveats that inference of the mixing history would benefit from further observations and that radiocarbon cannot rule out the presence of extremely old waters from exotic sources, the deep North Pacific waters are 1200–1500 yr old, which is more in line with existing numerical model results.
منابع مشابه
Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific
Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the...
متن کاملLow reservoir ages for the surface ocean from mid-Holocene Florida corals
[1] The C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years)...
متن کاملSensitivity of Ventilation Rates and Radiocarbon Uptake to Subgrid-Scale Mixing in Ocean Models
The sensitivity of ventilation timescales and radiocarbon (14C) uptake to subgrid-scale mixing parameterization is studied in a global ocean model. Seven experiments are examined that are identical in every manner except their representation of subgrid-scale mixing of tracers. The cases include (i) two runs with traditional Cartesian mixing (HOR), (ii) a run with enhanced isopycnal mixing (ISO)...
متن کاملRadiocarbon Reservoir Age of High Latitude North Atlantic Surface Water During the Last Glacial
The radiocarbon reservoir age of high latitude North Atlantic Ocean surface water is essential for linking the continental and marine climate records, and is expected to vary according to changes in North Atlantic Deep Water (NADW) production. Measurements from this region also provide important input and/or tests of oceanic radiocarbon using 3-D global ocean circulation models. Here, we presen...
متن کاملAssessing the ability of the C projection-age method to constrain the circulation of the past in a 3-D ocean model
[1] Radiocarbon differences between benthic and planktonic foraminifera (B-P ages) and radiocarbon projection ages are both used to determine changes of the past ocean circulation rate. A global 3-D ocean circulation model with a constant modern ocean circulation is used to study which method is less influenced by atmospheric DC variations. Three factors cause uncertainties: first, the long equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012